Calculations Policy

Policy Creation and Review	
Author(s)	Boleyn Trust Governing Body
Last Review Date	$\mathbf{1}^{\text {st }}$ March 2018
Ratified by Governing Body	$\mathbf{1}^{\text {st }}$ February 2019
Next Review Date	February 2020

Addition \& Subtraction

Pupils should be taught to:

- Recognise some numerals of personal significance.
- Recognises numerals 1 to 5 .
- Counts up to three or four objects by saying one number name for each item.
- Counts actions or objects which cannot be moved.
- Counts objects to $\mathbf{1 0}$, and beginning to count beyond 10.
- Counts out up to six objects from a larger group.
- Selects the correct numeral to represent 1 to 5 , then 1 to 10 objects.
- Counts an irregular arrangement of up to ten objects.
- Estimates how many objects they can see and checks by counting them.
- Uses the language of 'more' and 'fewer' to compare two sets of objects.
- Finds the total number of items in two groups by counting all of them.
- Says the number that is one more than a given number.
- Finds one more or one less from a group of up to five objects, then ten objects.
- In practical activities and discussion, beginning to use the vocabulary involved in adding and subtracting.
- Records, using marks that they can interpret and explain.
- Begins to identify own mathematical problems based on own interests and fascinations.

Early Learning Goal

Children count reliably with numbers from one to 20
Children place the numbers in order and say which number is one more or one less than a given number.
Using quantities and objects, they add and subtract two single-digit numbers; count on or back to find the answer.

| Addition | Subtraction | Multiplication | Division |
| :--- | :--- | :--- | :--- | :--- |
| Begin to relate addition to combining
 two groups of objects | Begin to relate subtraction to 'taking
 away' | Real life contexts and use of
 practical equipment to count in
 repeated groups of the same | Share objects into equal groups up to 10, then |
| Make a record in pictures, words or
 symbols of addition activities already
 carried out. | Make a record in pictures, words or
 symbols of subtraction activities
 already carried out | Count in twos; fives; tens | Use related vocabulary |

Year 4

Addition \& Subtraction	Year 4	
Pupils should be taught to:	Pupils should be taught to:	Fractions
add and subtract numbers with	recall multiplication and division facts	Pupils should be taught to:

Year 1

Addition \& Subtraction
Pupils should be taught to:

- Read, write and interpret mathematical statements involving addition (+), subtraction () and equals (=) signs
- Represent and use number bonds and related subtraction facts within 20

$$
13+7=20 \quad 20-7=13
$$

- Add and subtract one-digit and two-digit numbers to $\mathbf{2 0}$, including zero

$$
11+5 \quad 16-0
$$

- Solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as
7 = ? - 9 .

Multiplication \& Division

Pupils should be taught to

- Begin to count in 2s, 5 s and 10 s .
- Solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.

Fractions

Pupils should be taught to:

- Recognise, find and name a half as one of two equal parts of an object, shape or quantity.
- Recognise, find and name a quarter as one of four equal parts of an object, shape or quantity.

Using number facts

'Story' of 4, 5, 6, 7, 8 and 9
e.g. $7=7+0,6+1,5+2,4+3$

Number bonds to 10
e.g. $5+5,6+2,7+3,8+2,9+1$,
$10+0$
$-00000-000-$

Use patterns based on known facts when adding
e.g. $4+3=7$
so we know $24+3,44+3,74+3$

Demonstrate mental addition Children need to understand the concept of equality before using the ' $=$ ' sign. Calculations should be written either side of the equality sign so that the sign is not just interpreted as 'the answer'.

```
2=1+1
2+3=4+1
3 = 3
2+2+2=4+2
```

Missing numbers need to be placed in all possible places.

$\mathbf{3}+\mathbf{4}=\square$	$\square=\mathbf{3 + 4}$
$\mathbf{3}+\square=\mathbf{7}$	$\mathbf{7}=\square+\mathbf{4}$
$\square+\mathbf{4}=\mathbf{7}$	$\mathbf{7}=\mathbf{3}+\square$
$\square+\nabla=\mathbf{7}$	$\mathbf{7}=\square+\nabla$

Cleves Primary School

The difference between 7 and 11 (Counting up)

0	1	2	3	4	5	6	7	8	9	10	11	12

Recording by

- drawing jumps on prepared lines - constructing own lines
(Teachers model jottings appropriate for larger numbers)

Using number facts

'Story' of 4, 5, 6, 7, 8 and 9
e.g. 'Story' of 7 is
$7-1=6,7-2=5,7-3=4$ etc
Number bonds to 10
e.g. $10-1=9,10-2=8,10-3=7$

Subtract using patterns of known facts
e.g. $7-3=4$ so we know $27-3=24$,
$47-3=44,77-3=74$
Concrete objects/Pictures / marks Sam spent 4p. What was his change from 10p?

Use of bead strings to model groups of 5 or 10.

Pictures / marks
There are 3 sweets in one bag.
How many sweets are there in 5 bags?

Jo has 12 Lego wheels. How many

 cars can she make?How many towers of three can I make with twelve cubes?

Sharing

Practical activities involving sharing, distributing cards when playing a game, putting objects onto plates, into cups, hoops etc.

Begin to find half or a quarter of a quantity using sharing

6 sweets are shared between 2 people. How many do they have each?

12 sweets are shared between 4 bowls. How many sweets in each bowl?

Year 2

Addition \& Subtraction

Pupils should be taught to:

add and subtract numbers mentally, including:

- solve problems with addition and subtraction:
- using concrete objects and pictorial representations, including those involving numbers, quantities and measures
- applying their increasing knowledge of mental and written methods
- recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100
- add and subtract numbers using concrete objects, pictorial representations, and mentally, including:
- a two-digit number and ones

$$
23+5 \quad 23-5
$$

- a two-digit number and tens

$$
41+20 \quad 55-10
$$

- two two-digit numbers

$$
22+45 \quad 70-20
$$

- adding three one-digit numbers

$$
3+4+5
$$

- show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot

$$
3+4=7 \text { and } 4+3=7
$$

(commutative)

- recognise and use the inverse relationship between addition and subtraction and use this to check calculations and missing number problems.

$$
6+?=10 \quad 10-?=6 \quad 10-?=4
$$

Multiplication \& Division

Pupils should be taught to:

- recall and use multiplication and division facts for the 2, 5 and 10 multiplication tables, including recognising odd and even numbers
- calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (×), division (\div) and equals (=) signs
- show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot

$$
7 \times 5=15 \text { and } 5 \times 7=15 \text { (commutative) }
$$

- solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts.

Fractions

Pupils should be taught to:

- recognise, find, name and write fractions $\frac{1}{3}, \frac{1}{4}$, $\frac{2}{4}$ and $\frac{3}{4}$ of a length, shape, set of objects or quantity
- write simple fractions for example, $\frac{1}{2}$ of $6=3$ and recognise the equivalence of

$$
\frac{2}{4} \text { and } \frac{1}{2}
$$

Add two 2-digit numbers by counting on in 10s, then in 1s	Subtract 9,11 , 19 or 21 $35-9=26$
e.g. $55+37$ as $55+30(85)+7=92$	
Add near multiples of 10	
Add 9 or 11 by adding 10 and adjusting by 1	
$35+9=44$	
+10	Using number facts
	Know pairs of numbers which make the numbers up to and including 12 and derive related subtraction facts
$\begin{aligned} & \text { Or } \\ & \text { e.g. } 46+19 \\ & \text { e.g. } 63+21 \end{aligned}$	e.g. $10-6=4,8-3=5,5-2=3$ Subtract using patterns of known facts
Using number facts Know pairs of numbers which make the numbers up to and including 12	e.g. $9-3=6$, so we know $39-3=36,69-3=66,89-3=86$
$\begin{aligned} & \text { e.g. } 8=4+4,3+5,2+6,1+7,0+8 \\ & \text { e.g. } 10=5+5,4+6,3+7,2+8,1+9 \\ & 0+10 \end{aligned}$	Bridging 10 $\text { e.g. } 52-6 \text { as } 52-2(50)-4=46$
Use patterns based on known facts when adding	
e.g. $6+3=9$, so we know $36+3=39$, $66+3=69,56+3=59$	$\begin{array}{lllll}40 & 56 & 50 & 52 & 60\end{array}$

Grouping
Use arrays and repeated addition to find answers to multiplication
e.g. 4×2 as four lots of two things
e.g. 4×2 as four steps in the $2 s$ count as well as two lots of 4

- - - 4×2 or $4+4$
2×4 or $2+2+2+2$

$\begin{array}{lllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$

Understand the commutative law that 2×4 can be worked out as two 4 s or four 2 s

Grouping

Link to counting and understanding number strand

Count up to 100 objects by grouping them and counting in tens, fives or twos

Relate division to multiplication by using arrays or towers of cubes to find answers to division
e.g. 'How many towers of five cubes can I make from twenty cubes?'
as_ $\times 5=20$ and also as $20 \div 5=$

Relate division to 'clever' counting and hence to multiplication
e.g. 'How many fives do I count to get to twenty?

Sharing/Fractions

Find one half, one quarter and three quarters of shapes and sets of objects
e.g. find a quarter of 16 cubes by sorting the cubes into four piles

1 Whole				
$\frac{1}{2}$			$\frac{1}{2}$	
$\frac{1}{4}$		$\frac{2}{4}$	$\frac{1}{4}$	

February 2019

Bridging 10 e.g. $57+5=57+3(60)+2=62$	Counting up
Find a small difference by counting up	

Know doubles to double 20
e.g. double 7 is 14

OH17

47770
Start learning $\times 2, \times 5, \times 10$ tables, relating these to 'clever' counting in $2 \mathrm{~s}, 5 \mathrm{~s}$, and 10 s
e.g. $5 \times 10=50$, and five steps in the 10 s count $=10,20,30,40,50$

Partitioning

Demonstrate mental multiplication
Understand that multiplication is the inverse of division and vice versa.

Missing numbers

Be able to complete number sentences where a missing number is shown by a symbol:

$\mathbf{7 \times 2}$	$=\square$	$\square=2 \times 7$	
$7 \times \square$	$=14$	14	$=\square \times 7$
$\square \times 2$	$=14$	14	$=2 \times \square$

$\square \times 2=14 \quad 14=2 \times \square$
$\square \times \nabla=14 \quad 14=\square \times \nabla$

Using number facts

Know half of even numbers to 24

Know $\times 2, \times 5$ and $\times 10$ division facts
Begin to know $\times 3$ division facts

In the context of money count forwards and backwards using $2 p, 5$ p and 10p coins

Practical grouping e.g. in PE
12 children get into teams of 4 to play a game. How many teams are there?

Demonstrate mental division

Understand that division is the inverse of multiplication and vice versa.

Missing numbers

Be able to complete number sentences where a missing number is shown by a symbol:

$6 \div 2=\square$	$\square=6 \div 2$
$6 \div \square=3$	$3=6 \div \square$
$\square \div 2=3$	$3=\square \div 2$
$\square \div \nabla=3$	$3=\square \div \nabla$

Addition \& Subtraction

Pupils should be taught to:
add and subtract numbers mentally, including:

- a three-digit number and ones $122+7$ 122-7
- a three-digit number and tens 230+50 230-50
- a three-digit number and hundreds $245+400$ 445-200
- add and subtract numbers with up to three digits, using the efficient written methods of column addition and subtraction
- estimate the answer to a calculation and use inverse operations to check answers
- solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction.

Multiplication \& Division

Pupils should be taught to:

- recall and use multiplication and division facts for the 3, 4 and 8 multiplication tables (prior knowledge- year 2 should know the 2, 5, 10 times tables)
- write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to efficient written methods
- solve problems, including missing number problems, involving multiplication and division. Solve problems (e.g. 3 hats and 4 coats, how many different outfits are there?; 12 sweets shared equally between 4 children; 4 cakes shared equally between 8 children).

Fractions

Pupils should be taught to:

- count up and down in tenths; recognise that tenths arise from dividing an object into 10 equal parts and in dividing one-digit numbers or quantities by 10
- recognise, find and write fractions of a discrete set of objects: unit fractions and nonunit fractions with small denominators
- recognise and use fractions as numbers: unit fractions and non-unit fractions with small denominators
- recognise and show, using diagrams, equivalent fractions with small denominators
- add and subtract fractions with the same denominator within one whole [for example, $\frac{5}{7}+\frac{1}{7}=\frac{6}{7}$]
- compare and order unit fractions, and fractions with the same denominators
- solve problems that involve all of the above.

Cleves Primary School

[^0]| Add two 2-digit numbers by adding the multiple of 10 , then the 1 s | Subtract near multiples of 10 and 100 | Grouping | Grouping |
| :---: | :---: | :---: | :---: |
| e.g. $67+55$ as $67+50(117)+5=122$
 Add near multiples of 10 and 100
 e.g. $67+39$ | $\begin{aligned} & \text { e.g. } 648-199 \\ & \text { e.g. } 86-39 \end{aligned}$ | Recognise that multiplication is commutative
 e.g. $4 \times 8=8 \times 4$ | Recognise that division is not commutative e.g. $16 \div 8$ does not equal $8 \div 16$ |
| e.g. $467+199$ | Counting up | Multiply multiples of 10 by 1-digit numbers | Relate division to multiplications 'with holes in' |
| | Find a difference between two | e.g. $30 \times 8=240$ | e.g. ? $\times 5=30$ is the same calculation as |
| | smaller to the larger
 e.g. 121-87 | Multiply 'friendly' 2-digit numbers by 1-digit numbers | thus we can count in 5 s to find the answer |
| $\begin{array}{lllll}300 & 400 & 500 & 600 & 700\end{array}$ | | e.g. 13×4 | crimom |
| | +3 +10 +21 | Using number facts | |
| Add pairs of 'friendly' 3-digit numbers e.g. $548+120$ | | Know doubles to double 20 e.g. double 15 is 30 | |
| Count on from 3-digit numbers e.g. $247+34$ as $247+30(277)+4=281$ | | Know doubles of multiples of 5 to | |
| Using number facts | 87 121 | 100 | $\text { e.g. } 240 \div 8=30$ |
| Know pairs which total each number to 20 | Using number facts | e.g. double 85 is 170 | Begin to use subtraction of multiples of 10 of the divisor to divide numbers above the 10th |
| $\begin{aligned} & \text { e.g. } 7+8=15 \\ & \text { e.g. } 12+6=18 \end{aligned}$ | Know pairs which total each number to 20 | Know $\times 2, \times 3, \times 4, \times 5, \times 8, \times 10$ tables facts | multiple |
| Number bonds to 100 | e.g. 20-14 = 6 | | $\begin{aligned} & \text { e.g. } 52 \div 4 \text { is } \\ & 10 \times 4(40) \text { and } 3 \times 4(12) \end{aligned}$ |
| e.g. $35+65$ | Number bonds to 100 | | $=13$ |
| e.g. $46+54$ | e.g. 100-48=52 | Missing numbers | |
| e.g. $73+27$ | e.g. 100-35 = 65 | Be able to complete number | Using number facts |
| Add to the next 10 and the next 100
 e.g. $176+4=180$
 e.g. $435+65=500$ | Use base 10 and bead strings to support. | sentences where a missing number is shown by a symbol: | Know half of even numbers to 40 Know half of multiples of $\mathbf{1 0}$ to 200 e.g. half of 170 is 85 |
| Use base 10 and bead strings to support. | Subtract using number facts to bridge back through a 10 | $\begin{array}{ll} \text { e.g. } & 6 \times ?=18 \\ 6 \times 10=? \\ & 20=? \times 5 \end{array}$ | Know $\times 2, \times 3, \times 4, \times 5, \times 8, \times 10$ division facts |
| Missing numbers | e.g. $42-5=42-2(40)-3=37$ | ? x ? $=24$ | |
| $\begin{aligned} & \text { e.g. } \\ & 19+?=33 \end{aligned}$ | Missing numbers | | |
| $?+14=33$ | e.g. 36-17 = ? | | |
| 10 + ? + $50=100$ | ? $-15=19$ | | |
| ? + ? + ? = 100 | $\begin{aligned} & ?-?=19 \\ & 20-?-?=5 \end{aligned}$ | | |

Calculation Policy Guidance

Written Methods

Stage 1

Build on partitioning to develop expanded column addition with two 3-digit numbers
e.g. $466+358$
\qquad

``` 792
```

Use base 10 to support the secure understanding of place value

Stage 2

Ladder Vertical addition to support place value.

Use base 10 to support the secure understanding of place value

$$
\begin{array}{r}
466 \\
+326 \\
\hline 12 \\
80 \\
700 \\
\hline 792
\end{array}
$$

Encourage children to use the correct place value language e.g.

For the middle column children should be taught to say " $60+20=80$ rather than 6+2 = 8"

Written Methods

Perform divisions just above the 10th multiple using written jottings, understanding how to give a remainder as a whole number.
E.g. Sharing - 16 shared between 3, how many left over?
$16 \div 3=5 \mathrm{r} 1$
Short division
By the end of the year short division without carrying over.

$$
4 \left\lvert\, \begin{array}{|c|c|}
88 & 81181 \\
888
\end{array}\right.
$$

Fractions

Use division facts to find unit and simple nonunit fractions of amounts within the timestables
e.g. $\frac{3}{4}$ of 48 is $3 \times(48 \div 4)=36$

Stage 3

Use base 10 to support the secure understanding of place value

Compact column addition with two or more 3-digit numbers or towers of 2-

digit numbers

e.g. $347+286+495$

$$
\begin{array}{rrr}
2 & 1 & \\
3 & 4 & 7 \\
2 & 8 & 6 \\
4 & 9 & 5 \\
\hline 1 & 2 & 8
\end{array}
$$

Compact column addition with 3- and

4-digit numbers

Fractions

Recognise like fractions that add to 1
$\frac{5}{7}+\frac{2}{7}=\frac{7}{7}=1$
$\frac{3}{4}+\frac{1}{4}=\frac{4}{4}=1$

Stage 2

Expanded column subtraction. The key to the subtraction 343-127 is to partition 43 as $300+30+13$, allowing $200+20+7$ to be subtracted from $300+30+13$ to give $100+10+6=116$. This links clearly to the column subtraction:

$$
\begin{array}{rr}
3013 \\
40+3 \\
-20+7 \\
\hline 10+6 & -\quad \begin{array}{r}
30 \\
300+40+3 \\
200+20+7 \\
\hline 100+10+6
\end{array}
\end{array}
$$

Use base 10 to support the secure understanding of place value

Stage 3

Compact column subtraction with 2 and 3 -digit numbers

Fractions

Recognise complements of any fraction to 1
e.g. $1-\frac{1}{4}=\frac{3}{4}$
$1-\frac{3}{5}=\frac{2}{5}$
up to 4 digits using the efficient written methods of column addition and subtraction

- estimate and use inverse operations to check answers to a calculation
- solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why.
for multiplication tables up to 12×12
- use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying together three numbers
- recognise and use factor pairs and commutativity in mental calculations E.g know 12×4 is the same as 4×12
- multiply two-digit and three-digit numbers by a one-digit number using formal written layout
- solve problems involving multiplying and adding, including using the distributive law. Show equal statements use the distributive law
-

$39 \times 7=(30 \times 7)+(9 \times 7)$
and associative law
$(2 \times 3) \times 4=2 \times(3 \times 4)$

- Practise mental methods and extend this to three- digit numbers to derive facts, for example $200 \times 3=600$
$600 \div 3=200$
- recognise and show, using diagrams, families of common equivalent fractions
- count up and down in hundredths; recognise that hundredths arise when dividing an object by one hundred and dividing tenths by ten.
- solve problems involving increasingly harder fractions to calculate quantities, and fractions to divide quantities, including nonunit fractions where the answer is a whole number
- add and subtract fractions with the same denominator
- recognise and write decimal equivalents of any number of tenths or hundredths
- recognise and write decimal equivalents to $\frac{1}{2}, \frac{1}{4}$ and $\frac{3}{4}$
- find the effect of dividing a one- or two-digit number by 10 and 100, identifying the value of the digits in the answer as ones, tenths and hundredths
- round decimals with one decimal place to the nearest whole number
- compare numbers with the same number of decimal places up to two decimal places
- solve simple measure and money problems involving fractions and decimals to two decimal places.

Mental Methods

Taking away

Use place value to subtract
e. g. 4748-4000
e. g. 4748-8

Take away multiples of 10,100 ,
$1000, \ldots 1,10$ p or 0.1
e. g. 8392-50
e. g. 6723-3000
e. g. $£ 3.74-\mathbf{3 0 p}$
e. g. 5•6-0.2

Partitioning
e. g. $£ 5.87-£ 3.04$ as $£ 5-£ 3$ and 7 p 4p
e. g. 7493-2020
as 7000-2000 and
90-20

Count back
e. g. 6482-1301 as 6482-1000 (5482) - 300 (5182) - $1=5181$

Subtract near multiples of 10,100 , 1000 or $\& 1$
e. g. 3522-1999
e. g. $£ 34.86-£ 19.99$

Counting up

Mental Methods

Count in $2 \mathrm{~s}, 3 \mathrm{~s}, 4 \mathrm{~s}, 5 \mathrm{~s}, 6 \mathrm{~s}, 7 \mathrm{~s}, 8 \mathrm{~s}$, $9 \mathrm{~s}, 10 \mathrm{~s}, 11 \mathrm{~s}, 12 \mathrm{~s}, 25 \mathrm{~s}, 50 \mathrm{~s}, 100 \mathrm{~s}$ and 1000s

Doubling and halving

Find doubles to double 100 and beyond using partitioning e.g. double 126

Begin to double amounts of money e.g. $£ 3.50$ doubled is $£ 7$

Use doubling as a strategy in multiplying by 2,4 and 8
e.g. 34×4 is double 34 (68)
doubled again $=136$

Grouping

Mental Methods

Count in $2 \mathrm{~s}, 3 \mathrm{~s}, 4 \mathrm{~s}, 5 \mathrm{~s}, 6 \mathrm{~s}, 7 \mathrm{~s}, 8 \mathrm{~s}, 9 \mathrm{~s}, 10 \mathrm{~s}$, $11 \mathrm{~s}, 12 \mathrm{~s}, 25 \mathrm{~s}, 50 \mathrm{~s}, 100 \mathrm{~s}$ and 1000 s

25252525252525252525252525252525

Doubling and halving
Find half of even numbers to 200 and beyond using partitioning e.g. find half of 258

Begin to halve amounts of money e.g. $£ 9$ halved is $£ 4.50$

Use halving as a strategy in dividing by 2, 4 and 8
e.g. $164 \div 4$ is half of 164 (82) halved again $=41$

Grouping

Use multiples of 10 times the divisor to divide by 1 -digit numbers
above the tables facts
e.g. $45 \div 3=15$

$10 \times 3=30$	(15 left over)
$5 \times 3=15$	(0 left over)
$15 \times 3=45$	

$15 \times 3=45$
(0 left over)

Divide multiples of 100 by 1-digit numbers using division facts
e.g. $\mathbf{3 2 0 0} \div 8=400$

Using number facts

Know times-tables up to 12×12 and al related division facts

Use a written version of a mental method to divide 2 - and 3 -digit numbers by 1 -digit numbers
e.g. $86 \div 3$ as 20×3 (60) and 8×3 (24), remainder 2

$$
\begin{array}{r}
20 \times 3=\frac{60}{64} \\
8 \times 3=\frac{24}{2}
\end{array}
$$

Short division
$3 \longdiv { 1 3 2 }$
$1 \frac{102}{306}$
$3 \longdiv { 3 0 6 }$
082
$4 \longdiv { 3 ^ { 3 } 2 8 }$

Fractions

Use division facts to find unit and non-unit fractions of amounts within the times-
tables
e.g. $\frac{7}{8}$ of 56 is $7 \times(56 \div 8)=49$

Addition \& Subtraction
Multiplication \& Division

Fractions

Pupils should be taught to:

- add and subtract whole numbers with more than 4 digits, including using efficient written methods (column addition and subtraction)
- add and subtract numbers mentally with increasingly large numbers (e.g. 12462 - 2 $300=10$ 162)
- use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy
- solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why.

Pupils should be taught to:

- Identify multiples and factors, including finding all factor pairs
- solve problems involving multiplication and division where larger numbers are used by decomposing them into their factors
- know and use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers
- establish whether a number up to $\mathbf{1 0 0}$ is prime and recall prime numbers up to 19
- multiply numbers up to 4 digits by a oneor two-digit numbers using an efficient written method, including long multiplication for two-digit numbers
- multiply and divide numbers mentally drawing upon known facts
- divide numbers up to 4 digits by a onedigit number using the efficient written method of short division and interpret remainders appropriately for the context e.g. what does the remainder represent? One fifth? What would the remainder be as a decimal? etc.
- multiply and divide whole numbers and those involving decimals by 10, 100 and 1000

Pupils should be taught to:

- compare and order fractions whose denominators are all multiples of the same number
- identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths
- recognise mixed numbers and improper fractions and convert from one form to the other and write mathematical statements > 1 as a mixed number
[for example, $\frac{2}{5}+\frac{4}{5}=\frac{6}{5}=1 \frac{1}{5}$]
- add and subtract fractions with the same denominator and denominators that are multiples of the same number
- multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams
- read and write decimal numbers as fractions [for example, $0.71=\frac{71}{100}$]
- recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents
- round decimals with two decimal places to the nearest whole number and to one decimal place
- read, write, order and compare numbers with up to three decimal places

Taking away

Use place value to subtract decimals
e.g. $4.58-0.08$
e.g. 6.26-0.2

Take away multiples of powers of 10
e.g. $15672-300$
e.g. 4.82-2
e.g. 2.71-0.5
e.g. $4.68-0.02$

Partitioning or counting back
e.g. 3964-1051
e.g. 5. $72-2.01$

Subtract near multiples of $1,10,100$, 1000, 10000 or $£ 1$
e.g. $86456-9999$
e.g. 3. 58 - 1.99

Counting up

Find a difference between two numbers by counting up from the smaller to the larger
e.g. $£ 12.05-£ 9.59$
e.g. $2009-869=1140$

Doubling and halving
Double amounts of money using partitioning e.g. double £6. 73

$£ 13.46$

Use doubling and halving as a strategy in multiplying by 2, 4, 8, 5 and 20
e.g. 58×5 is half of $58 \times 10(580)=$ 290

Grouping
Multiply whole numbers and
decimals by 10,100,1000
e.g. $3.4 \times 100=340$

Use partitioning to multiply 'friendly' 2- and 3-digit numbers by 1-digit numbers
e.g. 402×6 as
$400 \times 6(2400)$ and $2 \times 6(12)=2412$

$$
(x 6)
$$

2412

Use partitioning to multiply decimal numbers by 1 -digit numbers

Doubling and halving

Halve amounts of money using partitioning e.g. half of $£ 14.84$ is half of $£ 14$ ($£ 7$) plus half of $84 p$ (42p)

Use doubling and halving as a strategy in dividing by 2, 4, 8, 5 and 20
e.g. $115 \div 5$ as
double 115 (230) $\div 10=23$
or
$115 \div 10=11.5$ then double $=23$

Grouping

Divide numbers by $10,100,1000$ to obtain decimal answers with up to 3 decimal places
e.g. $340 \div 100=3.4$

Use the 10th, 20th, 30th ... multiple of the divisor to divide 'friendly' 2 - and 3-digit numbers by 1 -digit numbers
e.g. $186 \div 6$ as
$30 \times 6(180)$ and 1×6 (6)

$30 \times 6=180$	(6 left over)
$1 \times 6=6$	(O left over)
$31 \times 6=186$	

Using number facts

Add to the next 10 from a dec
number
e.g. $7 \cdot 8+2 \cdot 2=10$
Missing numbers
e.g. $77.26+?=80$
$43,871+?=50,000$

Written Methods

Use the compact column addition for adding several amounts of money
e.g. $£ 14.64+£ 28.78+£ 12.26$

11 . 1
14.64
+28.78
12.26
55.68

Also:

- to add pairs of 5-digit numbers
- to add towers of several larger numbers
- to add decimal numbers with up to 2 decimal places

Fractions

Add related fractions
e.g. $\frac{3}{4}+\frac{1}{8}+\frac{7}{8}$

Find a difference between two amounts of money by counting up

Using number facts

Derived facts from number bonds to 10 and 100
e.g. $2-0.45$ using $45+55=100$ e.g. $3-0.86$ using $86+14=100$

Number bonds to $£ 1, £ 10$ and $£ 100$
e.g. $£ 4.00-£ 3.86$
e.g. $£ 100-£ 66$ using $66+34=100$

Missing numbers

What must be subtracted from a decimal with units and tenths to make the next whole number,
e.g. 8.4-? $=8$

Use knowledge of place value and related calculations, e.g.

$$
6.3-4.8 \text { using } 63-48
$$

$4 \times 3(12)$ and $0.5 \times 3(1.5)=13.5$
Multiply near multiples by rounding
e.g. 32×29 as $(32 \times 30)-32=928$

Using number facts
Use times-tables facts up to 12×12 to multiply multiples of $10 / 100$ of the multiplier
e.g. $4 \times 6=24$ so
$40 \times 6=240$ and
$400 \times 6=2400$
Use knowledge of factors and multiples in multiplication
e.g. 43×6 is double 43×3
e.g. 28×50 is half of
$28 \times 100(2800)=1400$
Know square numbers and cube numbers

Written Methods

Short multiplication of 2-, 3- and 4digit numbers by 1 -digit numbers e.g. 435×8

Long multiplication of 2-, 3-and 4digit numbers by 'teen' numbers e.g. 48×16

Use division facts from the times-tables up to 12×12 to divide multiples of powers of 10 of the divisor
e.g. $3600 \div 9$ using $36 \div 9$

Know square numbers and cube numbers

Written Methods

Use a written version of a mental strategy to divide 3-digit numbers by 1-digit numbers
e.g. $326 \div 6$ as $50 \times 6(300)$ and 4×6 (24), remainder 2

$$
\begin{aligned}
50 \times 6 & =\frac{326}{300} \\
4 \times 6 & =\frac{24}{2}
\end{aligned} \quad 326 \div 6=54 \text { r2 }
$$

Short division of 3- and 4-digit numbers by 1-digit numbers
e.g. $139 \div 3$

$$
3 \longdiv { 0 } \begin{array} { l l l l }
{ 0 } & { 4 } & { 6 } & { 5 } \\
{ 1 { } ^ { 1 } 3 } & { 1 9 } & { 1 6 }
\end{array} r 1
$$

Give quotients as remainders or as fractions

$$
465 \text { r1 or } 465 \frac{1}{3}
$$

Fractions

	Compact column subtraction for numbers with up to 5 digits $\begin{array}{rl} \text { e.g. } 92,452 & -12,168 \\ 9 & 2 \end{array} 4_{1}^{14} / 5$ Continue to use counting up subtraction for subtractions involving money, including finding change e.g. $£ 50-£ 28.76$ Use counting up subtraction to subtract decimal numbers $\text { e.g. } 4 \cdot 2-1 \cdot 74=2.46$ 1.74 4.2 Fractions Subtract related fractions $\text { e.g. } \frac{3}{4}-\frac{1}{8}=\frac{6}{8}-\frac{1}{8}+\frac{5}{8}$ Counting up subtraction provides a default method for ALL children	$\begin{array}{r} 48 \\ \times 16 \\ \hline 288 \\ +480 \\ \hline 768 \\ \hline 1 \end{array}$ NB: Use a different colour for numbers that have already been carried over and added in the first part of the sum as well as the place holder. Partition multiplication of numbers with up to 2 decimal places by 1-digit numbers $\text { e.g. } 1.34 \times 6=$ $1.00 \times 6=6.00$ $0.30 \times 6=1.80$ $0.04 \times 6=0.24$ $1.34 \times 6=8.04$ Fractions Multiply fractions by 1-digit numbers e.g. $\text { e.g. } \frac{3}{4} \times 6=\frac{18}{4}=4 \frac{2}{4}=4 \frac{1}{2}$ Use concrete fraction pieces to secure knowledge. Grid multiplication provides a default method for ALL Children	```Find unit and non-unit fractions of large amounts e.g. \(\frac{3}{5}\) of 265 is \(3 \times(265 \div 5)=159\) \(05 \quad 3\) \(5 \longdiv { 2 ^ { 2 } 6 { } ^ { 1 5 } 5 }\) \(53 \times 3=159\) Turn improper fractions into mixed numbers and vice versa \[\begin{aligned} \frac{15}{4} & =3 \frac{3}{4} \\ 5 \frac{2}{6} & =\frac{32}{6} \end{aligned} \]```

Year 6

Addition \& Subtraction

Pupils should be taught to:

- solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why
- solve problems involving addition, subtraction, multiplication and division
- use their knowledge of the order of operations to carry out calculations involving the four operations
- use estimation to check answers to calculations and determine, in the context of a problem, levels of accuracy.
- perform mental calculations, including with mixed operations and large numbers

Multiplication \& Division

Pupils should be taught to:

- multiply multi-digit numbers up to 4 digits by a two-digit whole number using the efficient written method of long multiplication
- divide numbers up to 4 digits by a two-digit whole number using the efficient written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context
- identify common factors, common multiples and prime numbers

Fractions

Pupils should be taught to:

- use common factors to simplify fractions; use common multiples to express fractions in the same denomination
- compare and order fractions, including fractions > 1
- add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions
- multiply simple pairs of proper fractions, writing the answer in its simplest form
[for example, $\frac{1}{4} \times \frac{1}{2}=\frac{1}{8}$]
- divide proper fractions by whole numbers [for example, $\frac{1}{3} \div 2=\frac{1}{6}$]
- associate a fraction with division and calculate decimal fraction equivalents [for example, 0.375] for a simple fraction [for example $\frac{3}{8}$]
- identify the value of each digit in numbers given to three decimal places and multiply and divide numbers by 10 , 100 and 1000 giving answers up to three decimal places

Pupils should practice addition, subtraction, multiplication and division for larger numbers, using the efficient written methods of column addition and subtraction, short and long multiplication, and short and long division.

Using number facts

Use division facts from the times-tables up to 12×12 to divide decimal numbers by 1 digit numbers
e.g. $1 \cdot 17 \div 3=0.39$
is
$117 \div 3=39$
$39 \div 100=0.39$
Know tests of divisibility for numbers divisible by 2, 3, 4, 5, 9, 10 and 25

Written Methods

Short division of 3-and 4-digit numbers by 1-digit numbers using quotients as fractions or decimals.
e.g. $1396 \div 5$

Fraction

$$
\begin{gathered}
0279{\longdiv { 1 ~ } { } ^ { 1 } 3 { } ^ { 3 } 9 { } ^ { 4 } 6}^{\frac{1}{5}}
\end{gathered}=279 \frac{1}{5}
$$

Decimal

$$
\begin{array}{cccc}
0 & 2 & 7 & 9 \cdot 2 \\
5 & 1{ }^{1} 33^{3} 9{ }^{4} 6 \cdot{ }^{1} 0
\end{array}=279.2
$$

1
14.64
+28.78
12.26
55.68

Fractions

Add unlike fractions, including mixed numbers
e.g.
$\frac{1}{4}+\frac{2}{3}=\frac{3}{12}+\frac{8}{12}=\frac{11}{12}$
Or
$2 \frac{1}{4}+1 \frac{1}{3}=$
$2 \frac{3}{12}+1 \frac{4}{12}=3 \frac{7}{12}$
Use counting up for subtractions
where the larger number is a multiple
or near multiple of 1000 or 10000
Use counting up subtraction when
dealing with money
e.g. $£ 100-£ 78.56$
e.g. $£ 45 \cdot 23-£ 27.57=£ 17.66$
$£ 27.57$

Use counting up subtraction to subtract decimal numbers
e.g. $13.1-2.37=10.73$

OR

Compact column subtraction with money
e.g. £28.7-£12.96

$$
\begin{array}{r}
7.161 \\
28.70 \\
-12.96 \\
\hline 15.74
\end{array}
$$

Multiplying decimals
Partition multiplication of numbers with up to 2 decimal places by 1-digit numbers
e.g. $25 \cdot 34 \times 6=$
$20.00 \times 6=120^{1} 0.00$
$5.00 \times 6=30.00$
$0.30 \times 6=1.80$

$0.04 \times 6=$	0.24
$25.34 \times 6=152.04$	

Short multiplication of decimal numbers (including money) using
$\times 10$ and $\div 10$
$\times 100$ and $\div 100$
Multiply decimals by firstly
calculating how many times bigger ($10,100,1000$ etc)
22.3×5 (multiply the first number by 10 to make the whole number, 223).

Then use Short / long written multiplication (in this case short multiplication)

Divide the answer by how many

 times you made it bigger in the first place.$1115 \div 10=111.5$
So $22.3 \times 5=111.5$
Multiplying 2 decimal numbers.

Long division of 3- and 4-digit numbers by 2-digit numbers
e.g. $4176 \div 13$

Level 5/6

$$
\begin{aligned}
& 0348.16 \\
& 1233^{3}{ }^{13} 1 \begin{array}{llll}
7 & 8.00
\end{array} \\
& \begin{array}{r}
3600 \\
-3 \quad 1517
\end{array} \\
& -480 \\
& -9 \quad{ }^{-9} .^{10} \\
& \text { - } 1.2 \\
& 0 .{ }^{7} 8^{10} \\
& -0.72
\end{aligned}
$$

Give remainders as whole numbers, fractions or decimals

348 r 2 or $348 \frac{2}{12}=348 \frac{1}{6}$ or 348.16
Fractions
Subtract unlike fractions, including
mixed numbers
e.g.
$\frac{3}{4}=\frac{1}{3}=\frac{9}{12}+\frac{4}{12}=\frac{5}{12}$
$2 \frac{3}{4}-1 \frac{1}{3}=$
$2 \frac{9}{12}-1 \frac{4}{12}=1 \frac{5}{12}$

Counting up subtraction provides a default method for ALL children
E.g. $\quad 33.6 \times 2.5=84$
$(33.6 \times 10) \times(2.5 \times 10)=$
To make both of these numbers a whole number you multiply each one by 10 .
$10 \times 10=100$ times bigger overall

$$
\begin{aligned}
& 336 \\
& \begin{array}{l}
\mathrm{X} \quad 2 \\
\hline 1 \begin{array}{l}
3
\end{array}
\end{array} \\
& 1680 \\
& 672 \\
& 8,400 \div 100=84
\end{aligned}
$$

Fractions

Multiply simple pairs of proper fractions
e.g. $\frac{1}{2} \times \frac{1}{4}=\frac{1}{8}$
$\frac{1}{2} \times \frac{1}{4}$ actually means $\frac{1}{4} \div 2=\frac{1}{8}$
or $\frac{1}{2} \div 4=\frac{1}{8}$

Grid multiplication provides a default method for ALL children

Use place value to divide 1- and 2-place decimals by numbers ≤ 12
e.g. $3.65 \div 5$ as
$(365 \div 5) \div 100=0.73$

$$
\begin{gathered}
07 \quad 3 \\
53^{3} 6^{15} 5
\end{gathered}
$$

$$
73 \div 100=0.73
$$

Fractions

Divide proper fractions by whole numbers
$\frac{3}{4} \div 4=\frac{3}{4} \quad x \quad \frac{1}{4}$
Which actually means $\frac{1}{4} \div 4=\frac{1}{16}$
$\frac{1}{16} \times 3$ means 3 lots of $\frac{1}{16}=\frac{3}{16}$
So $\frac{3}{4} \div 4=\frac{3}{16}$

By the end of year 6, children will have a range of calculation methods, mental and written. Selection of methods will depend upon the numbers involved.

[^0]: February 2019

