Maths Skills Progression

EARLY YEARS FOUNDATION STAGE (EYFS)

	Mental and Written Calculations
Addition	Children will engage in a wide variety of songs and rhymes, games and activities; They will begin to relate addition to combining two groups of objects, first by counting all and then by counting on from the largest number; They will find one more than a given number; In practical activities and through discussion they will begin to use the vocabulary involved in addition; e.g. $2+1=3$ 'What is one more than 2?'; e.g. 5+3=8 'You have five apples and I have three apples. How many apples altogether?'; Children are encouraged to develop a mental picture of the number system in their heads to use for calculation; They develop ways of recording calculations using pictures, symbols etc.; They use number lines and practical resources such as Multilink cubes, Dienes, Numicon etc. to support calculation and teachers demonstrate the use of the number line; Children then begin to use numbered lines to support their own calculations using a numbered line to count on in ones; Bead strings or bead bars can be used to illustrate addition including bridging through ten by counting on 2 then counting on 3 etc.
Subtraction	Children will engage in a variety of counting songs, rhymes and practical activities; In practical activities and through discussion they will begin to use the vocabulary associated with subtraction; They will find one less than a given number; They will begin to relate subtraction to 'taking away' using objects to count 'how many are left' after some have been taken away? e.g. 6$2=4$; 'Take two apples away. How many are left?'; $8-1=7$ 'What is one less than 8 ?'; Children will begin to count back from a given number; Children are encouraged to develop a mental picture of the number system in their heads to use for calculation; They develop ways of recording calculations using pictures, symbols etc.; They use number lines and practical resources such as Multilink cubes, Dienes, Numicon etc. to support calculation and teachers demonstrate the use of the number line; The number line should also be used to show that 6-3 means the 'difference between 6 and 3 ' or 'the difference between 3 and 6 ' and how many jumps they are apart; Children then begin to use numbered lines to support their own calculations using a numbered line to count back in ones; Bead strings or bead bars can be used to illustrate subtraction including bridging through ten by counting back 3 then counting back 2 etc.
Multiplication	Children will engage in a wide variety of songs and rhymes, games and activities; In practical activities and through discussion they will begin to use the vocabulary associated with multiplication and begin to solve problems involving doubling e.g. $3 \times 2=6$ 'Three apples for you and three apples for me. How many apples altogether?'; $4 \times 2=8$ 'What is double 4?'; Children will experience equal groups of objects and will count in 2 s and 10 s and begin to count in 5 s ; They will work on practical problem-solving activities involving equal sets or groups.
Division	Children will engage in a wide variety of songs and rhymes, games and activities; In practical activities and through discussion they will begin to use the vocabulary associated with division and begin to solve problems involving halving and sharing e.g. $6 \div 2=3$ 'Share the apples between two people. How many apples each?' e.g. 'Half of the apples are for you and half of the apples are for me.'; Children will understand equal groups and share items out in play and problem solving; They will count in 2 s and 10 s and later in 5 s .

YEAR 1		
	Mental Calculation	Written Calculation
Addition	Number bonds（＇story＇of 5，6，7，8， 9 and 10）； Count on in 1s from a given 2－digit number； Add two 1－digit numbers； Add three 1－digit numbers，spotting doubles or pairs to 10； Count on in 10s from any given 2－digit number； Add 10 to any given 2－digit number； Use number facts to add 1－digit numbers to 2－digit numbers e．g．Use $4+3$ to work out $24+3,34+3$ ； Add by putting the larger number first；	Number bonds $10=\quad 1+9 \quad 2+8 \quad 3+7 \quad 4+6$ คคคค \square $13-p=d$ \qquad
Subtraction	Number bonds（＇story＇of 5，6，7，8， 9 and 10）； Count back in 1s from a given 2－digit number； Subtract one 1－digit number from another；Count back in 10s from any given 2－digit number； Subtract 10 from any given 2－digit number；Use number facts to subtract 1－digit numbers from 2－ digit numbers e．g．Use $7-2$ to work out $27-2,37-2$ ；	
Multiplication	Begin to count in 2s，5s and 10s； Begin to say what three 5 s are by counting in 5 s ，or what four 2 s are by counting in 2 s ，etc．； Double numbers to 10 ；	Double 4 is 8 double 4 is 8 $4 \times 2=8$ $\begin{aligned} & 2+2+2+2+2=10 \\ & 5 \text { lots of } 2 \text { is } 10 \\ & 5 \times 2=10 \end{aligned}$
Division	Begin to count in 2s，5s and 10s； Find half of even numbers to 12 and know it is hard to halve odd numbers； Find half of even numbers by sharing； Begin to use visual and concrete arrays or＇sets of＇ to find how many sets of a small number make a larger number；	Share 12 cubes between 4 children．How many do they get each？

YEAR 2		
	Mental Calculation	Written Calculation
Addition	Number bonds - know all the pairs of numbers which make all the numbers to 12 , and pairs with a total of 20; Count on in 1s and 10s from any given 2-digit number; Add two or three 1-digit numbers; Add a 1-digit number to any 2-digit number using number facts, including bridging multiples of 10 e.g. $45+4$ e.g. $38+7$ Add 10 and small multiples of 10 to any given 2-digit number; Add any pair of 2-digit numbers;	Adding a 2 digit number to a 1 digit number (with exchanging/regrouping)
Subtraction	Number bonds - know all the pairs of numbers which make all the numbers to 12 ; Count back in 1 s and 10 s from any given 2 digit number; Subtract a 1-digit number from any 2-digit number using number facts, including bridging multiples of 10 $\text { e.g. } 56-3 \quad \text { e.g. } 53-5$ Subtract 10 and small multiples of 10 from any given 2-digit number; Subtract any pair of 2-digit numbers by counting back in 10 s and 1 s or by counting up;	$78-34=44$ $87-63=24$
Multiplication	Count in 2s, 5s and 10s; Begin to count in 3 s ; Begin to understand that multiplication is repeated addition and to use arrays e.g. $3 \times$ 4 is three rows of 4 dots; Begin to learn the $\times 2, \times 3, \times 5$ and $\times 10$ tables, seeing these as 'lots of' e.g. 5 lots of 2, 6 lots of 2,7 lots of 2 ; Double numbers up to 20; Begin to double multiples of 5 to 100; Begin to double 2-digit numbers less than 50 with 1 s digits of $1,2,3,4$ or 5 ;	$3+3+3=9$ 3 groups of 3 is 9 $3 \times 3=9$ What is double $16 ?$
Division	Count in 2s, 5s and 10s; Begin to count in 3 s ; Using fingers, say where a given number is in the $2 \mathrm{~s}, 5 \mathrm{~s}$ or 10 s count e.g. 8 is the fourth number when I count in 2 s ; Relate division to grouping e.g. How many groups of 5 in 15 ? Halve numbers to 20; Begin to halve numbers to 40 and multiples of 10 to 100; Find $1 / 2,1 / 3,1 / 4$ and $3 / 4$ of a quantity of objects and of amounts (whole number answers);	§ \$8) \% $8 \div 2=4$ What is half of 28 ?

YEAR 3		
	Mental Calculation	Written Calculation
Addition	Know pairs with each total to 20 $\text { e.g. } 2+6=8,12+6=18,7+8=15 \text {; }$ Know pairs of multiples of 10 with a total of 100; Add any two 2-digit numbers by counting on in 10s and 1s or by using partitioning; Add multiples and near multiples of 10 and 100; Perform place-value additions without a struggle e.g. $300+8+50=358$; Use place value and number facts to add a 1 digit or 2-digit number to a 3-digit number e.g. $104+56$ is 160 since $104+50=154$ and $6+4=10$ $676+8$ is 684 since $8=4+4$ and 76 $+4+4=84$ Add pairs of 'friendly' 3 -digit numbers e.g. $320+450$ Begin to add amounts of money using partitioning;	Use expanded column addition to add two or three 3-digit numbers or three 2-digit numbers e.g. $466+358$ $\begin{array}{rrr} 400 & 60 & 6 \\ +\quad 300 & 50 & 8 \\ \hline 700 & 110 & 14 \\ \hline \end{array}=824$ Use expanded column addition where digits in a column add to more than the column value e.g. $466+358$ $\begin{array}{r} 40060 \\ 300 \\ 50 \\ +100 \\ \hline 10 \\ \hline 800 \\ \hline \end{array}$ Begin to use compact column addition to add numbers with 3 digits e.g. $347+286+495$
		$\begin{array}{r} 347 \\ 286 \\ +\quad 495 \\ \hline 21 \\ \hline 1128 \\ \hline \end{array}$ Begin to add like fractions e.g. $3 / 8+1 / 8+1 / 8$ Recognise fractions that add to 1 e.g. ${ }^{1 / 4}+3 / 4$ e.g. $3 / 5+2 / 5$
Subtraction	Know pairs with each total to 20 e.g. $8-2=6$ e.g. $18-6=12$ e.g. $15-8=7$; Subtract any two 2-digit numbers; Perform place-value subtractions without a struggle e.g. $536-30=506$; Subtract 2-digit numbers from numbers > 100 by counting up e.g. $143-76$ is done by starting at 76 . Then add $4(80)$, then add 20 (100), then add 43, making the difference a total of 67; Subtract multiples and near multiples of 10 and 100; Subtract, when appropriate, by counting back or taking away, using place value and number facts; Find change from $£ 1, £ 5$ and $£ 10$;	Use counting up as an informal written strategy for subtracting pairs of 3 -digit numbers e.g. $423-357$ e.g. 200-167 Use counting up subtraction to find change from $£ 1, £ 5$ and $£ 10$ e.g. $£ 10.00-£ 6.84$
		Begin to subtract like fractions e.g. $7 / 8-3 / 8$

YEAR 4		
	Mental Calculation	Written Calculation
Addition	Add any two 2-digit numbers by partitioning or counting on; Know by heart/quickly derive number bonds to 100 and to $£ 1$; Add to the next $100, £ 1$ and whole number e.g. $234+66=300 \quad$ e.g. $3 \cdot 4+0 \cdot 6=4$; Perform place-value additions without a struggle e.g. $300+8+50+4000=4358$; Add multiples and near multiples of 10, 100 and 1000;	Build on expanded column addition to develop compact column addition with larger numbers e.g. $1466+4868$ Column addition for 3- digit and 4-digit

	Add $£ 1,10$ p, 1 p to amounts of money; Use place value and number facts to add 1-, 2, 3- and 4-digit numbers where a mental calculation is appropriate e.g. $4004+156$ by knowing that $6+4=10$ and that $4004+150=4154$ so the total is 4160;	$\begin{aligned} & \text { numbers e.g. } 5347+2286+1495 \\ & \quad 5347 \\ & 2286 \\ & +\quad 1495 \\ & \hline 121 \\ & \hline 9128 \\ & \hline \end{aligned}$ Add like fractions e.g. $3 / 5+4 / 5=7 / 5=12 / 5$ Be confident with fractions that add to 1 and fraction complements to 1 e.g. $2 / 3+_{-}=1$
Subtraction	Subtract any two 2-digit numbers; Know by heart/quickly derive number bonds to 100; Perform place-value subtractions without a struggle e.g. $4736-706=4030$; Subtract multiples and near multiples of 10, $100,1000, £ 1$ and 10 p; Subtract multiples of $0 \cdot 1$; Subtract by counting up e.g. $503-368$ is done by adding $368+2+30+100+3$ (so we added 135); Subtract, when appropriate, by counting back or taking away, using place value and number facts; Subtract $£ 1,10$ p, 1 p from amounts of money; Find change from $£ 10, £ 20$ and $£ 50$;	Use expanded column subtraction for 3- and 4-digit numbers e.g. 726-358 Begin to develop compact column subtraction e.g. 726 358 $\begin{array}{r} 61116 \\ 7 \not 28 \\ -358 \\ \hline 368 \\ \hline \end{array}$ Use complementary addition to subtract amounts of money, and for subtractions where the larger number is a near multiple of 1000 or 100 e.g. 2002 - 1865; Use counting up subtraction to find change from $£ 10$, $£ 20, £ 50$ and $£ 100$ e.g. $£ 50-£ 34.75$ (Answer found as $£ 10+£ 5+20$ p +5 p); Subtract like fractions e.g. $4 / 5-3 / 5=1 / 5$ Use fractions that add to 1 to find fraction complements to 1 e.g. $1-2 / 3=1 / 3$

YEAR 5		
	Mental Calculation	Written Calculation
Addition	Know number bonds to 1 and to the next whole number; Add to the next 10 from a decimal number e.g. $13 \cdot 6+6 \cdot 4=20 ;$ Add numbers with 2 significant digits only, using mental strategies e.g. $3 \cdot 4+4 \cdot 8$ e.g. $23000+47000$; Add 1- or 2-digit multiples of $10,100,1000$, 10000 and 100000 e.g. $8000+7000$ e.g. $600000+700000$; Add near multiples of $10,100,1000,10000$ and 100000 to other numbers e.g. 82472 + 30 004; Add decimal numbers which are near multiples of 1 or 10 , including money e.g. $6 \cdot 34+1 \cdot 99$ e.g. $£ 34 \cdot 59+£ 19.95$; Use place value and number facts to add two or more 'friendly' numbers, including money and decimals e.g. $3+8+6+4+7$ e.g. $0.6+0.7+0.4$ e.g. $2056+44 ;$	Use column addition to add two or three whole numbers with up to 5 digits; Use expanded column addition to add several amounts of money (2 decimal places) e.g. $£ 14.64+£ 28.78+£ 12.26$ Leading to a compact column addition to add any pair of 2place decimal numbers, including amounts of money e.g. $15.68+27.86$ $\begin{array}{r} 15 \cdot 68 \\ +\quad 27.86 \\ 11 \cdot 1 \\ \hline 43 \cdot 54 \\ \hline \end{array}$ Begin to add related fractions using equivalences e.g. $1 / 2+1 / 6=3 / 6+1 / 6$ Choose the most efficient method in any given situation;
Subtraction	Subtract numbers with 2 significant digits only, using mental strategies e.g. 6.2-4.5 e.g. 72 000-47000; Subtract 1- or 2-digit multiples of 10,100 , 1000, 10000 and 100000 e.g. 8000 3000 e.g. 60000 - 200 000; Subtract 1- or 2-digit near multiples of 10, 100, 1000, 10000 and 100000 from other numbers e.g. 82472 - 30 004; Subtract decimal numbers which are near multiples of 1 or 10 , including money e.g. 6.34-1.99 e.g. $£ 34 \cdot 59-£ 19 \cdot 95 ;$ Use counting up subtraction, with knowledge of number bonds to 10,100 or $£ 1$, as a strategy to perform mental subtraction e.g. $£ 10-£ 3 \cdot 45$ e.g. 1000 - 782; Recognise fraction complements to 1 and to the next whole number e.g. $1^{2} / 5+3 / 5=2$;	Use compact or expanded column subtraction to subtract numbers with up to 5 digits e.g. 16324-8516 $\begin{array}{rrrr} 01513114 \\ x & 6 \not 214 \\ - & 8516 \\ \hline 780 & 8 \\ \hline \end{array}$ Continue to use counting up subtraction for subtractions involving money, including finding change e.g. $£ 50-£ 28.76$ (Answer found as $£ 20+£ 1+20 \mathrm{p}+4 \mathrm{p}$); Use counting up subtraction to subtract decimal numbers e.g. 4.2-1.74

Division	Know by heart all the division facts up to $144 \div 12$; Divide whole numbers by $10,100,1000,10$ 000 to give whole number answers or answers with 1, 2 or 3 decimal places; Use doubling and halving as mental division strategies e.g. $34 \div 5$ is $(34 \div 10) \times 2$; Use knowledge of multiples and factors, as well as tests for divisibility, in mental division e.g. $246 \div 6$ is $123 \div 3$ e.g. We know that 525 divides by 25 and by 3; Halve amounts of money by partitioning e.g. $1 / 2$ of $£ 75 \cdot 40=1 / 2$ of $£ 75(£ 37 \cdot 50)$ plus half of 40 p (20p) which is $£ 37 \cdot 70$; Divide larger numbers mentally by subtracting the 10th or 100th multiple as appropriate e.g. $96 \div 6$ is $10+6$, as $10 \times 6=60$ and $6 \times 6=36$ e.g. $312 \div 3$ is $100+4$ as $100 \times 3=300$ and $4 \times 3=12$; Know tests for divisibility by 2, 3, 4, 5, 6, 9 and 25; Know square numbers and cube numbers; Reduce fractions to their simplest form;	Use a written version of a mental strategy to divide 3-digit numbers by 1-digit numbers e.g. $326 \div 6$ as 50×6 (300) and 4×6 (24), remainder 2 $\begin{aligned} & 326 \div 6=\square \\ & \begin{array}{r} \square \times 6=326 \\ 50 \times 6=300 \\ 4 \times 6=24 \\ \hline 54 \end{array} \\ & \hline \end{aligned}$ Use short division to divide a number with up to 4 digits by a 1 -digit number e.g. $139 \div 3$ $3 \begin{aligned} & 46 \text { r1 } \\ & { } } \end{aligned}$ Give remainders as whole numbers or as fractions; Find non-unit fractions of large amounts; Turn improper fractions into mixed numbers and vice versa; Choose the most efficient method in any given situation;

YEAR 6		
	Mental Calculation	Written Calculation
Addition	Know by heart number bonds to 100 and use these to derive related facts e.g. $3 \cdot 46+0.54$; Derive, quickly and without difficulty, number bonds to 1000; Add small and large whole numbers where the use of place value or number facts makes the calculation do-able mentally e.g. $34000+$ 8000; Add multiples of powers of 10 and near multiples of the same e.g. $6345+199$; Add negative numbers in a context such as temperature where the numbers make sense; Add two 1-place decimal numbers or two 2-place decimal numbers less than 1 e.g. $4 \cdot 5+6 \cdot 3 \quad \text { e.g. } 0 \cdot 74+0 \cdot 33$ Add positive numbers to negative numbers; e.g. Calculate a rise in temperature or continue a sequence beginning with a negative number	Use compact column addition to add numbers with up to 5 digits and decimal numbers up to 2 decimal places, including money e.g. $£ 14.64$ $+£ 28.78+£ 12.26$ $\begin{array}{r} £ 14.64 \\ +\quad £ 28.78 \\ £ 12.26 \\ 11 \cdot 1 \\ \hline £ 55.68 \\ \hline \end{array}$ Use column addition to add decimal numbers with up to 3 decimal places; Add mixed numbers and fractions with different denominators;
Subtraction	Use number bonds to 100 to perform mental subtraction of any pair of integers by complementary addition e.g. $1000-654$ as $46+300$ in our heads; Use number bonds to 1 and 10 to perform mental subtraction of any pair of 1-place or 2-place decimal numbers using complementary addition and including money e.g. $10-3.65$ as $0 \cdot 35+6$ e.g. $£ 50-£ 34 \cdot 29$ as $71 p+£ 15$; Use number facts and place value to perform mental subtraction of large numbers or decimal numbers with up to 2 places e.g. $467900-3005$ e.g. $4.63-1.02$; Subtract multiples of powers of 10 and near multiples of the same; Subtract negative numbers in a context such as temperature where the numbers make sense;	Use compact column subtraction to subtract numbers with up to 6 digits e.g. 34685 16458 Use complementary addition for subtractions where the larger number is a multiple or near multiple of 1000 or 10000 ; Use counting up subtraction when dealing with money e.g. $£ 45.23-£ 27.57$ (Answer found as $£ 10+£ 5+£ 2+40$ p +23 p +3p); Use counting up subtraction to subtract decimal numbers e.g. 13.1-2.37 (Answer found as $10+0.6+0.1+0.03$); Use complementary addition for subtractions of decimal numbers with up to 3 places, including money; Subtract mixed numbers and fractions with different denominators;

Multiplication	Know by heart all the multiplication facts up to 12×12; Multiply whole numbers and decimals with up to 3 places by 10,100 or 1000 e.g. $234 \times$ $1000=234000$ e.g. $0 \cdot 23 \times 1000=230$; Identify common factors, common multiples and prime numbers and use factors in mental multiplication e.g. 326×6 is 652×3 which is 1956 ; Use place value and number facts in mental multiplication e.g. $4000 \times 6=24000$ e.g. $0.03 \times 6=0 \cdot 18$; Use doubling and halving as mental multiplication strategies, including to multiply by $2,4,8,5,20,50$ and 25 e.g. 28×25 is a quarter of $28 \times 100=700$; Use rounding in mental multiplication e.g. 34 $\times 19$ as $(34 \times 20)-34$; Multiply 1 - and 2 -place decimals by numbers up to and including 10 using place value and partitioning	Use short multiplication to multiply numbers with up to 4 digits by 1-digit numbers e.g. ```3743 x 6 3743 * 6 421``` Use long multiplication to multiply numbers with up to 4 digits by a 2-digit number e.g. 456×38 $\begin{array}{r} 456 \\ \times \quad 38 \\ \hline 13680 \\ 3644^{4} 8 \\ 11 \\ \hline 17328 \\ \hline \end{array}$ Use short multiplication to multiply a 1-digit
	e.g. $3 \cdot 6 \times 4$ is $12+2 \cdot 4$ e.g. 2.53×3 is $6+1.5+0.09$; Double decimal numbers with up to 2 places using partitioning e.g. $36 \cdot 73$ doubled is double 36 (72) plus double 0.73 (1•46);	number by a number with 1 or 2 decimal places, including amounts of money e.g. $£ 13.72 \times 6$ Multiply fractions and mixed numbers by whole numbers; Multiply fractions by proper fractions; Use percentages for comparison and calculate simple percentages;
Division	Know by heart all the division facts up to $144 \div 12$; Divide whole numbers by powers of 10 to give whole number answers or answers with up to 3 decimal places; Identify common factors, common multiples and primes numbers and use factors in mental division e.g. $438 \div 6$ is $219 \div 3$ which is 73 ; Use tests for divisibility to aid mental calculation; Use doubling and halving as mental division strategies, for example to divide by $2,4,8,5$, 20 and 25 e.g. $628 \div 8$ is halved three times: 314, 157, 78.5; Divide 1- and 2-place decimals by numbers up to and including 10 using place value e.g. $2 \cdot 4$ $\div 6=0.4$ e.g. $0 \cdot 65 \div 5=0.13$ e.g. $£ 6 \cdot 33 \div 3=£ 2 \cdot 11$; Halve decimal numbers with up to 2 places using partitioning e.g. Half of 36.86 is half of $36(18)$ plus half of 0.86 (0.43); Know and use equivalence between simple fractions, decimals and percentages, including in different contexts; Recognise a given ratio and reduce a given ratio to its lowest terms;	Use short division to divide a number with up to 4 digits by a 1-digit or a 2-digit number e.g. $139 \div 3$ $3 \begin{aligned} & 46 \mathrm{r} 1 \\ & \end{aligned}$ Use long division to divide 3-digit and 4-digit numbers by 2 -digit numbers e.g. $4176 \div 13$ $\begin{aligned} & 13 \begin{array}{r} 300+20+1, r 3 \\ 4176 \\ -3900 \\ 276 \\ \frac{-260}{16} \\ \frac{-13}{3} \end{array} \quad 4176 \div 13=321 \text { r } 3 \\ & \end{aligned}$ Give remainders as whole numbers or as fractions or as decimals; Divide a 1-place or a 2-place decimal number by a number ≤ 12 using multiples of the divisors; Divide proper fractions by whole numbers;

